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A response of viscous heat-conducting compressible fluid to an abrupt change of 
angular velocity of a containing thermally insulated circular cylinder under the 
existence of stable distribution of the temperature is investigated within the 
framework of the Boussinesq approximation for a time duration of the order 
of the homogeneous-fluid spin down time in order to resolve the Holton-Pedlosky 
controversy. The explicit expression of the solution is obtained by the standard 
method and Holton’s conclusion is confirmed. The secondary meridional current 
induced by the Ekman layers spins the fluid down to a quasi-steady state within 
the present time scale. However, unlike the homogeneous case, the quasi-steady 
state is not one of solid body rotation. The final approach to the state of rigid 
rotation is achieved via the viscous diffusion in the time scale of the usual 
diffusion time. 

1. Introduction 
The spin down problem of rotating stratified fluid is of central interest to 

some astronomers and hydrodynamicists. 
The astronomical motivation comes from Dicke’s hypothesis that the solar 

interior rotates much faster than the solar surface (Dicke 1964). Howard, Moore 
& Spiegel(l967) pointed out the existence of the solar spin down process similar to 
that in the rotating incompressible fluid and opposed Dicke’s hypothesis. Dicke 
denied the existence of this spin down procedure on the basis of the steady solu- 
tion in the solar interior and also on Pedlosky’s (1967) results, and insisted on 
the validity of his hypothesis (Dicke 1967). 

The direct hydrodynamical motivation results from the controversy between 
Holton’s and Pedlosky’s results about the case with a thermally insulated 
boundary (not to mention the above fundamental motivation). Holton investi- 
gated the spin down of rotating stratified fluid in a circular cylinder and showd 
the existence of a spin down procedure similar, but not completely the same, 
to that in homogeneous fluids (Holton 1965). Pedlosky re-examined the same 
problem from this view point to complete Holton’s heuristic treatment and gave 
a clearer formulation. His conclusion for the case with a thermally insulated 
boundary is that the interior region is spun down by a strictly diffusive process 
within the time scale of the diffusion time, which conclusion is completely at  
variance with that of Holton (Pedlosky 1967). Holton & Stone (1968) examined 
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Pedlosky ’s solution, pointed out the inconsistency of the solution, and requested 
the further investigation of the same problem. The purpose of this paper is to 
resolve this controversy. 

Viscous heat conducting compressible fluid fills, and rotates with, a circular 
cylinder rotating with constant angular velocity around the vertical axis of 
symmetry. The temperature near the top is held higher than that near the bottom 
to establish a stable distribution of the temperature. Then, the angular velocity 
of the cylinder is changed abruptly after a certain instant while the boundary 
is made thermally insulated. Our problem is to investigate the response of the 
fluid to this abrupt change for the time duration of the homogeneous-fluid spin 
down time within the framework of the Boussinesq approximation. 

The author also investigated the case with given boundary temperature 
and gave an explicit solution which is in qualitative agreement with that of 
Holton (Sakurai 1969). The present paper is an extension of his previous results 
to the case with a thermally insulated boundary. 

2. Basic equations 
The basic equations governing the axisymmetric motion of viscous heat con- 

ducting compressible fluid within the framework of the Boussinesq approxima- 
tion written in cylindrical co-ordinates rotating with the angular velocity Q 

where 
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and (q?, q,, qz), p ,  p ,  T, ( T ,  8, z ) ,  t ,  v, K ,  a, g, L and e are respectively the velocity, 
the pressure, the density, the temperature, the position vector, the time, the 
viscosity, the thermal conductivity, the coefficient of thermal expansion, the 
gravitational acceleration, the height of the cylinder and the parameter corre- 
sponding to the small deviation from the state of rotating equilibrium. Suffixes s, 
1 and 0 and bars on letters refer to the state of rotating equilibrium, the top 
and bottom of the cylinder and to the original physical quantity with dimension, 
respectively. In  the derivation of the above basic equations from those of the 
Boussinesq approximation, terms of the order of e2 and of Ln2/g are neglected, 
as is exemplified for the steady flow (Barcilon & Pedlosky 1967). E is assumed to 
be very small while S and u are taken to be of the order of 1, hereafter. 

The introduction of the stream function of the meridional current leads to the 
following: 

where 

ap, aP 

The transformation (1  5 )  corresponds to the time duration in which our investiga- 
tion is aimed. The quantities with tildes are assumed to be of the order of 1. 
Hence, equations (15) imply the possible existence of the meridional current 
with the same order of magnitude as that of the rotating homogeneous fluid. 

The initial conditions are obtained by the expression that the fluid is in 
rotating equilibrium until a certain instant: 

$=i j e=T=0 for 0 < z < 1 ,  ~ < i < r , , ,  t < ~ ,  (16) 

where r,, is the ratio of the radius to the height of the cylinder. 
The boundary conditions are obtained by expression of the fact that the 

angular velocity of the cylinder is changed abruptly after the above instant 
while the boundary is made thermally insulated: 

a$ aP 
az az $=-  = -  = 0, = w i  for z " =  0 or 1, 0 < i < r,,, t" > 0. (17) 

The tildes over letters are omitted, hereafter, for the sake of simplicity. 
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3. Similar solution in the limiting case of infinitely large radius of the 
cylinder 

Before going directly into the solution of our problem, it is interesting to note 
that there is the following similarity solution for the limiting case with infinitely 
large radius: 

The substitution of (19) into (11) to (13) leads to the following: 

II. = r$(x, t ) ,  qs = rV(z ,  t ) ,  T = T(z, t ) .  (19) 

Equations (20) and (21) are those already treated for the homogeneous case 
(Greenspan & Howard 1963). Therefore, it is concluded that the state of rigid 
rotation is established within the time scale of incompressible spin down time 
without regard to the stratification in the present limiting case. An important 
point to be stressed here is that this limiting case is not simply isolated from other 
cases but is tended continuously to as ro is made larger and larger. Pedlosky's 
solution (equation (6.37) in his paper) apparently violates this condition, and 
cannot be a correct one. Another interesting phenomenon which the above 
similarity solution implies is that the thickness of the thermal boundary layer 
is of the order of Eb, as is easily seen from (22). The meridional current driven 
by the Ekman layer modifies not only the velocity but also the temperature 
outside the boundary layer. The matching of this modified temperature with 
that of the boundary is achieved via thermal boundary layer of the above 
thickness. The appearance of this horizontal intermediate layer is characteristic 
of the transient variation within the time scale of the incompressible spin down 
time, and has no analogue in the steady flow problem. It is naturally expected 
that, for the case with finite ro, the intermediate layer of the thickness O(E*) 
coexists together with Ekman layer also along the vertical wall. 

4. Solution in the case with finite radius of the cylinder 
Quantities in the inner inviscid region are expanded as follows: 

q(r ,  8, z )  = q(O)(r, 8, z )  + Etq(')(r, 8, z )  + Ehf2)(r, 8, x )  + . . . . (23) 

In the above expression, every order of approximation is assumed to be of the 
order of 1 with respect to its arguments. This is the scaling assumption by which 
the validity of our method of solution is examined. The same is the case for 
every other expansion. 
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In the neighbourhood of horizontal boundaries, quantities are expanded as 
follows : 

q(r, 8, x )  = q(O)(r, 8, x )  + E@)(r, 8, z )  + Efq@)(r, 8, z )  + ... 
+ qh$o)(r, 8, Q) + E&#)(r, 8, Q )  + E*gi2)(r, 8, &) + . . . 
+ @y)(r ,  8, qi) + Ei@y)(r, 8, qi) + E$&@)(r, 8, qi) + . . . , (24) 

where z = j + ( - l)iEt&, (j = 0, l), (25) 

x = j + (- l ) m q j ,  (j = 0, l), (26)  

and quantities with hats and double hats are the corrections to those of the 
inviscid region corresponding, respectively, to the intermediate and to the 
Ekman layer. Since the boundary layers are restricted to the neighbourhood of 
the boundaries, these corrections must fade away at  the edge of the respective 
layers. 

Similar expansions are applied in the neighbourhood of the vertical boundary : 

where r = ro-EPa, 

r = ro - EhP. 

Apart from the above boundary layers, there exist corner boundary layers 
where the horizontal and the vertical boundary layers merge to compose a com- 
plicated structure. This is the reason why the corner points are omitted from 
the following treatment. We believe that the property of this corner structure 
does not play an important role in the determination of the spin down procedure. 

The substitution of (23) to (29) into (11) to (13) leads to the following zeroth- 
order equations. 

aT@) 
In  the inner inviscid region: 2 ~ - __ = 0, 

a Z  ar 

In  the horizontal layers: ($-a$ f p  = 0, (33) 

(34) 
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In the vertical layers: 

where vanishing quantities are omitted for the sake of simplicity. 
The zeroth-order boundary conditions are as follows: 

On the horizontal boundary: qVo) + @i0) = 0, 
A 

pbo)+@) = wr, 

The initial conditions are as follows: 

all zeroth-order quantities vanish for t < 0. 

$(O) = T(0) = 0. 

(47) 

The solution of (37) and (38) satisfying (45) and (46) is trivial: 
- - - - 

(48) 

$ ( O ) = O  for O < z < l ,  r = r o .  (49) 

This leads to the following by (43): 

This, in turn, leads to the following using (31): 

The inviscid peripheral velocity at the edge of the vertical boundary layer is 
preserved in a spin down time scale, as is stated correctly by Pedlosky (1967). 
This does not, however, mean that the meridional current is completely quenched, 
but that the meridional current does close itself by crawling along the edge of 
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the vertical boundary layer. In effect, as is shown presently, we can obtain the 
solution satisfying the necessary initial and boundary conditions including (49). 
The neglect of this crucial point is the reason why Pedlosky came to his erroneous 
conclusion. 

The first-order equations are summarized as follows : 

= o for o < z < 1,  r = ro, ( 5 5 )  

where vanishing quantities are again omitted for the sake of simplicity. It is 
interesting to note that the second-order quantity appears in the description 
of the first-order ones via the boundary conditions (54). The equation for this 
second-order quantity is as follows: 

Once &o) is known beforehand, as certainly is the case, ??)is uniquely determined 
by its boundary-layer character. Thus, our first-order equation can be solved 
without any trouble. The examination of higher order approximations elucidates 
that this property of self-containedness is inherited by every order of approxima- 
tion and assures the validity of our method of solution. 

The second-order equations for the vertical wall Ekman layer are as follows : 

- ap ar aa J 
Thus, the second-order vertical wall Ekman layer is passively induced by the 
zeroth-order inviscid flow. Holton's (1965) statement that the vertical wall 
boundary layer has only a passive role is quite right, provided that his solution 
corresponds to the present case with thermally insulated boundary. Un- 
fortunately, however, his solution neither corresponds to the present case nor 
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to the case with given boundary temperature (as is seen by the comparison be- 
tween equation ( 2 2 )  of his paper and equation (70) in the following and equation 
(6.29) of Pedlosky’s paper). 

By the introduction of the Laplace transform, it is shown that (34) and (35) 
have the following solutions under the boundary conditions (39) and (40) : 

(60) 

(61) 

= ( - 1 )l+j (1  - i ) ~ .  3 e-(l+i)Tj + ( - 1 )l+j (1 + i) B. 3 e-(1-0 t j j ,  

A yp = A e-(l+i)Vj + B.  e 4 - 0  qj, 

QP)) , 

where capital letters are the transformed quantities of corresponding ones desig- 
nated by small letters and suffixj refers to the top and bottom according to its 
value (1 and 0). It is noted that the initial condition (47) is used in the trans- 
formation of the basic equations. The imposition of the boundary condition (41) 
leads to the following boundary conditions to be satisfied by the inviscid flow: 

The transformed versions of (30) to (32) are as follows: 

Our problem is reduced to the solution of (65) under the boundary conditions 
(49) and (64). 

The above boundary value problem is easily solved to give the foflowing: 

where 

and J,(x) and on are the Bessel function of the first kind of order n and zeros of 
Jl(x), respectively. 

The substitution of (68) into (66) and (67), and the inversion of the transforma- 
tion leads to the following: 
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It is easily shown that the zeroth-order approximations (70)  and (71 )  are 
finite in the inviscid region: 0 < r < To,  0 < z < 1 .  The similar result is true for 
the boundary layer solutions. Thus, our zeroth-order approximation is self- 
consistent. The same is proved to be true by examination of the higher order 
approximations. 

5. Results and discussion 
The velocity and the temperature in the inviscid region depends on only one 

parameter S*/ro except for factors of proportionality. The case with infinitely 
large radius is equivalent to that with vanishing effect of stratification. Thus, 
our solution certainly includes the similar solution in Q 3 as its limiting case. The 
asymptotic velocity on the edge of the horizontal boundary layers is shown to be 
that of the rigid rotation by (70)  and the following: 

On the other hand, the velocity on the edge of the vertical wall boundary layers 
is that of the unperturbed state throughout the time scale of the spin down time. 
This is a good manifestation of the quasi-steady nature of the asymptotic state. 
This situation becomes clearer by the examination of the asymptotic amount 
of total angular momentum transferred into the inviscid region via the meridional 
current : 

where 

and suffix r refers to the new state of rigid rotation. By the integration of 

S sinh 5 Jo( 2ro {/S$)  
= ( 2ro 5)2 <( cosh 6 + 1 ) J1( 2ro 5/S*) ’ 

(74 )  

(75 )  

along suitable path with respect to <and the application of the theory of residues, 
the above is rewritten as follows: 

where I n ( z )  is the modified Bessel function of the first kind of order n. Equation 
(76 )  assures the continuous approach to the homogeneous-fluid limit, while ( 7 3 )  
shows the smooth fading away of the spin down procedure in the limit of 
very strong stratification. The calculated value of JIJ, is tabulated in table 1 .  
The third column of the above table is the value for the case with given boundary 
temperature. The amount of the transferred angular momentum is much less in 
the present case. We can say that the meridional current is more readily inter- 
rupted in the case with thermally insulated boundary. However, this does not 
mean the complete quenching of the meridional current. The meridional current 
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does exist within the time scale of the homogeneous-fluid spin down time. Only, 
its effect is weakened by the effect of the stable stratification. We stand com- 
pletely on the side of Holton in this respect. The secondary meridional current 
induced by the Ekman layers spins the fluid down to a quasi-steady state within 
the time scale of the homogeneous-fluid spin down time. However, unlike the 
homogeneous case, the quasi-steady state is not one of solid body rotation. 
Final approach to the state of rigid rotation is achieved via viscous diffusion in 
the time scale of the usual diffusion time. 

StlrO 
0 
0.25 
0.5 
0.75 
1 
1.25 
1.5 

r---- ~ 

Thermally 
insulated wall 

1 

0.7592 
0.6609 
0.5765 
0.5051 
0.4458 

TABLE 1. 

0.8720 

Boundary 
temperature given 

1 

0.9971 
0.9894 
0.9782 
0.9648 
0.9504 
0.9363 

The average temperature on each horizontal plane in the inviscid region is 
equal to that of the unperturbed state: 

This corresponds to the situation that thermal energy is not transferred across 
the boundary. 

The implication of our results on Dicke’s solar spin down controversy is clear. 
At least, he must abandon Pedlosky’s erroneous conclusion as the support of his 
hypothesis. He can, of course, rely on the non-uniformity of the quasi-steady 
state and also to maintain that our results do not apply on the basis of the 
limitation of Boussinesq approximation. However, this is not a problem of 
quality but of quantity. The best way to resolve the solar spin down controversy 
is to investigate the unsteady rotational motion of the model solar interior. 
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Note added in proof 

Thermal part of (17)  does not exactly correspond to the thermal insulation 
of the horizontal wall. However, this causes no limitations on applicability of 
our results. As is shown in (33), (42), (51), (54) and (56), the temperature 
distribution in the horizontal boundary layers does not affect those of the other 
physical quantities. In  effect, the derivation of (64) is completely independent 
of the thermal condition on the horizontal wall. Therefore, our results apply 
not only to the case described by (17) but also to any other cases as far as the 
thermal condition on the horizontal wall is concerned; for example, to the case 
with unperturbed temperature of the horizontal wall as well as the case with 
thermally insulated horizontal wall. 




